THE MASS SPECTRA OF NITRONES C-O BOND FORMATION UPON ELECTRON IMPACT¹

B. SØGAARD LARSEN, G. SCHROLL and S.-O. LAWESSON

Department of Organic Chemistry, Aarhus University, 8000 Aarhus C., Denmark

J. H. BOWIE

Department of Organic Chemistry, University of Adelaide, South Australia. 5000

and

R. G. COOKS

University Chemical Laboratory, Lensfield Road, Cambridge, England

(Received in the UK 26 February 1968; accepted for publication 15 March 1968)

Abstract—The mass spectra of a series of nitrones are reported and discussed. All spectra contain molecular ions, and the majority of fragment ions owe their genesis to skeletal-reorganization of the molecular ion. Fragmentation modes have been substantiated by high-resolution data and appropriate metastable ions. Deuterium labelling has been used to elucidate the M—H^{*} process which is observed in many spectra.

THE mass spectra of pyridine N-oxides,² quinoline N-oxides,³⁻⁵ Δ^{1} -pyrroline N-oxides,² phenazine and benzo[a]phenazine N-oxides⁶ and aromatic azoxy compounds^{7,8} have been reported. Skeletal-rearrangement fragments (produced by C--O bond formation) are observed in the mass spectra of N-oxides⁴⁻⁶ and azoxy compounds.^{7,8}

As a logical extension of the work on N-oxides⁶ and azoxy compounds,^{7,8} we have synthesized a series of nitrones (I-XV) and have measured their mass spectra.

R R 1: H н II: p-Mc н III: p-Clн IV:H p-Cl V: m-OH Н VI: o-OH н VII: o-OD Н VIII: p-OMe Н IX: m-NO₂ н X: p-Cl p-Cl X1: 0-OH p-Cl XII: o-OMe p-Cl XIII: p-NO2 p-Cl

 $C_{0}D_{5}$ -CH=N-C -O XV This study was also prompted from the knowledge⁹ that nitrones undergo photochemical cyclization to oxaziridines. The spectra are recorded in Table 1 or Figs 1-8, exact mass measurements are listed in Table 2. The presence of an appropriate

V mie I(%)	26 6	27 20	28 13	29 16	38 13	39 40	40 8	41 18	43 23	44 13	45 16	46 8	50 16	51 51	52 8	53 8	55 7	57 7	63 64 16 16
	65 41	6 1	16 3	68 8	72 16	74 6	7	5 6	76 6	77 100	78 9	9 2	1 4	92 6	93 36	94 13	104	4 10 5	5 107 8 8
	109 7	12 4	1 7	22 36	141 6	167 8	18	- 4 1 7	96 65	197 70	198 11	21 1	3(M) 8	Ĵ	50				
VI m/e I(%)	28 7	39 12	50 9	51 38	52 8	65 9	64 15	65 17	66 8	76 6	77 86	78 14	91 100	93 16	2 93 5 24	8 94 1 12	10 4 11	4 10 I	5 120 7 10
	121 15	14	1 I 6	167 15	168 12	184 13	18 1	5 1 9	96 76	197 41	212 6	21. 6	3(M) 1	21	14 14				
VII m/e I(%)	27 10	28 8	38 8	39 24	40 6	50 12	51 62	52 11	63 12	64 21	65 18	66 12	76 6	77 88	78 14	91 100	92 13	93 13	94 22
	95 11 d ₀ =	104 8 = 38	1(; d ₁)5 7 = 62	120 6 2%	121 11	122 11	16	57 9	168 6	185 8	186 7	19 3	6 I 5	97 24	198 14	213 15	214 23	(M*)
X m/e I(%)	38 6 125	39 14 12	50 24 6 1	51 20 27	62 9 128	63 25 138	64 8 13	73 7 9 1	74 12 40	75 57 141	76 16 152	77 7 24	87 4 8 2	89 18 49	90 35 250	99 14 251	111 86 252	112 10 25	113 25 3 264
	100 265(13	1. (M)	2 266 7	44 5 26	9 57(M 8	8	2	6	8	16	5	1	8	25	19	16	7	7 (58
X1 m/e I(%)	27 10	38 10	39 31	40 7	50 16	51 26	52 12	53 8	61 6	62 8	63 20	64 12	65 26	66 8	73 7	74 11	75 54	76 17 2	77 78 21 14
	85 6	90 17	91 10	92 7	93 10	94 7	111 58	11	2 0	113 21	120 15	121 32	12: }	21 81	25 00	126 11	127 43	128 10	129 10
	138 12 249(11	(M)	9 I 9	.40 8	141 16	166	16	7 I 5	68 7	219 8	230 54	23 5:	1 2.	32 26	233 16	247) 35	(M)	248 6	
XII m/e I(%)	27 10	37 10	38 16	39 35	50 43	51 46	52 9	62 12	63 30	64 13	65 30	66 12	75 71	76 11	77 58	78 7	89 12	90 9 32 0	91 92 52 23
	93 7	94 7	104 13	10)5 1 3	107 10	11 76	112 7	1	13 1 27	118 1 16	119 69	120 10	12 1	1 1 0	25 61	126 8	127 63	[28 11
	129 16	13: 3	51 1	36 36	138 7	141 27	14: 1(31 5	66 6	167 6	214 6	23(33) 2: 3	32 12	245 8	261) 9	(M)	263(N 3	()
XIII m/e I(%)	39 6 276	50 6 M)	51 6 279	63 9 (M)	75 12	90 18	111 14	11	3 6	125 100	126 9	127 43	128 13	8 I 3	50 8	151 9	152 8	166 6	260 8
	18	,	6																

TABLE 1. MASS SPECTRA OF V-VII, AND X-XIII*

* All peaks greater than 5% of the base peak are recorded.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	%) }
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$))
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,) .)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
165 C.H.NCl ³⁵	
183 C ₁₃ H ₁₃ N $C_{13}H_{13}N$ $C_{13}H_{13}N$	%)
	() ()
111 105 C-HAO	3/
$\{C, H, NCl^{37}, 90\%\}$	<u> </u>
127 C ₆ H ₆ NCl ³³ (10%) XI 121 C ₇ H ₆ O ₇	
152 C. H. (C. H. NCl ³⁷ (90	%)
127 $C_{b}H_{6}NCl^{35}$ (10	%)
129 C _b H _b NCl ³⁷	
IV - (C ₇ H ₄ OCl ³⁵ (95%)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	%)
141 $C_7 H_4 OCl^{37}$ I_{27} $C_6 H_6 NCl^{33}$ (70	%)
203.205 $C_{12}H_{10}NCl$ 129 $C_{6}H_{6}NCl^{37}$	
$V \qquad 121 \qquad C_7 H_8 O_2 \qquad \qquad 136 \qquad C_8 H_8 O_2$	
$122 C_7 H_6 O_2 167 C_{12} H_9 N$	
167 C ₁₂ H ₉ N	
$185 C_{12}H_{11}NO XIII 150 \int C_{7}H_{4}NO_{3} (55\%)$,)
(C ₁₂ H ₆ (45%)	
VIII 91 C_6H_5N $fC_7H_5NO_3$ (55%)	1
$\frac{150}{C_{12}H_{7}} = \frac{151}{C_{12}H_{7}} $	<i>יי</i>
$\frac{107}{C_{12}H_9N}$	<i>,</i> ,

TABLE 2. COMPOSITIONS OF SOME IONS IN THE MASS SPECTRA OF I-XIII

metastable ion for any process is indicated, both in the text and in Figs, by an asterisk. Structures drawn for fragment ions are nominal only [work in many laboratories has shown that molecular ion rearrangements are no longer rare (cf. Ref. 10)] but relate the decomposition patterns to the structure of the intact molecule.

Many fragment ions observed in the mass spectra of the nitrones I-XV are produced by skeletal-rearrangement processes (Figs 1-8). These are all low energy processes and occur at 10 eV. The relative abundances of many ions produced by the major rearrangement processes are summarized in Table 3. Five specific classes of skeletalrearrangements are observed. Consider the general cases XVI:

(1) M—CHNO—X —Y or M—CHNO—H₂ (or other variations) to produce either the biphenylene radical ion (a) or substituted biphenylene radical ions. These processes are observed in most spectra, and are of the general type $[ABC]^+ \rightarrow [AC]^+$ + B.⁽¹¹⁾ A compendium of such processes is available.¹⁰

(2) M—CO, together with additional fragmentation through the substituents. This process is observed in the spectra (Figs 1–3 and 7) of I, II, III and VIII and demands C—O bond formation. M—CO ions are also present in the spectra (Table 1) of V, VI and XI, but as these compounds are phenolic, it is likely that at least some of the CO lost originates from the phenol moiety.¹²

(3) A process observed in all spectra is M—Y C_6H_5N' , which produces a species X $C_7H_4O^+$, best represented as the substituted benzoyl cation *b*. The formation of *b* necessitates C—O bond formation. This rearrangement has been reported previously.¹³

(4) The process $M = X \cdot C_7 H_5 O$ (to produce $Y C_6 H_4 N^{\ddagger}$) is noted in all spectra except that of II [where m/e 91 corresponds exclusively to the tropylium cation (Fig. 2, Table 2)].

(5) Skeletal-rearrangements involving the M—O ion. These are not observed in all spectra, but are of the general type $[ABC]^+ \rightarrow [AC]^+ + B$, e.g. M—O—Cl^{*}—HCN to produce *a*, is observed in Fig. 4.

Compound	M+	M—1	м—о	м—со	X C₀H₄CO⁺	$YC_6H_4N^+$	YC ₆ H ₄ ⁺	X C ₆ H ⁺
I	23	19	9	5	21	60	$\mathbf{X} = \mathbf{Y}$	Total = 41
II	21	20	7	6	18	0	28	100
III	16	9	17	2	12	100	39	32
IV	18	6	6	0	24	100	38	7
v	17	4	70	5	47	23	100	35
VI	61	6	41	19	16	100	86	24
VIII	30	18	9	4	27	30	46	6
IX	8	1	6	0	4	100	34	0
х	13	7	25	0	26	100	$\mathbf{X} = \mathbf{Y}$	Total = 87
XI	35	2	52	8	32	100	59	11
XII	9	2	7	0	31	61	76	11
XIII	18	t	8	0	8	100	15	0

TABLE 3. RELATIVE ABUNDANCES (%) of some fragment ions in the spectra of I–VI and VIII–XIII \bullet

* Where the fragment ion contains Cl, the relative abundance of the ³⁵Cl isotope is recorded.

Before considering the rearrangement types 2–5 in detail, it is convenient to discuss several of the normal decompositions of nitrones, as a knowledge of these is necessary for the understanding of two of the rearrangement modes. Two processes observed in all spectra are M—O and M—H^{*}. M—O ions are of diagnostic value in the spectra of many compounds containing the $-N^+$ —O⁻ group.^{2–8} It is noteworthy that in no case does the intensity of the M—O ion (Table 3) vary more than 10% when the 'heated' and 'direct' spectra are compared, indicating that this process (which does not have an appropriate metastable ion) is mainly electron-impact induced. The general species produced will be c, and this representation is supported by the spectra

Fig. 3

Fig 5

FIG. 6

(Figs 4-6) of III and the labelled derivatives XIV and XV, where it can be seen that the process M—O—H of III becomes M—O—D in XIV. The ion produced is probably d (m/e 214/216). It has been shown¹⁴ that the M—1 ion in the spectra of diaryl Schitts' bases corresponds mainly (>85%) to ions analogous to d. Moreover, both the molecular ions and M—1 ions of Schiffs' bases undergo skeletal-reorganization reactions of the type ABC \rightarrow AC + B,¹⁴ thus clarifying the rearrangement process 5.

However, the hydrogen lost in the M—l process of nitrones, does not originate from the methine position. Figures 4-6 show that the hydrogen comes from the aromatic ring furthest from the N—O group. The deuterium labelling studies are consistent with the formation of the stable cation f by an intermolecular aromatic substitution reaction, viz. $e \rightarrow f$. The presence of a strongly electron withdrawing nitro substituent on the ring from which the hydrogen atom is lost, reduces the proclivity of the M—1 process (Table 3 and Fig. 8). Intermolecular aromatic substitution reactions involving C—O bond formation have been reported previously, 15-17 and it has been shown¹⁶ that the hydrogens attached to any one aromatic ring become equivalent during this reaction.

The skeletal-rearrangement fragments in the spectrum of azoxybenzene do not owe their genesis to the intermediacy of the o-hydroxyazobenzene radical ion, and breakdown of g has been invoked to rationalize the rearrangements.⁸ Similarly, the M—CO process of the nitrone (I) cannot be explained by the formation of the molecular ion of the Schiffs base XVIII. The rearrangement modes in I are M—CO—H^{*} and M—H^{*}—CO and in XVIII,¹⁴ M—H^{*}—CO and M—CHO^{*} (metastable ions substantiate all processes). Although two of these processes seem identical, they are not, as the M—l ions are different in each spectrum, viz. h and i respectively. Moreover, several prominent ions in the spectrum¹⁴ of XVIII are absent in that (Fig. 1) of I. The benzanilide radical ion is also not the reactive intermediate as this species does not exhibit an M—CO ion. An ion which best explains the M—CO process is k (analogous to g and i) which could originate by the process $j \rightarrow k$.

Processes 3 and 4 can be best explained by the formation of an oxaziridine intermediate. Although such a supposition is speculative, it has photochemical analogies.⁹ An investigation of the mass-spectral breakdown of the oxaziridines postulated, would probably not be meaningful because of the relative instability of such systems.⁹ The formation of the substituted benzoyl cations [metastable ions usually substantiate

the $M \rightarrow X - C_6 H_4 - C = 0$ process (Ref. 13 and Figs 1-8] could come from the intermediate *l*. Similarly, the ion *n* (Process 4) could arise from *l*.

It is clear that these processes may be further complicated by the presence of substituents (X and Y), e.g. when X is hydroxy, o-methoxyl or nitro (e.g. V, VI, IX-XIII) ions due to both $X \cdot C_6 H_4 \cdot CHO^+$ and $X \cdot C_6 H_4 C \equiv O^+$ are observed. When Y is *p*-chloro (IV, X-XIII), high resolution (Table 2) indicates that as well as $Y - C_6 H_4 N^+$ species (*n*), small amounts of $Y - C_6 H_4 N H_2^+$ are also formed. A different hydrogen rearrangement is observed in the spectrum of I. 40% of *m/e* 91 (base peak) corresponds to the tropylium cation ($C_7 H_7^+$), which can only be produced by a hydrogen rearrangement from the aromatic ring (adjacent to -N - O) to the methine group.

The fragmentations so far described have been due to reorganization of the molecular ion, which although of mechanistic interest, are of little use for structure elucidation. However, there are several processes which may be used for structure determination. The first of these is a specific hydrogen transfer process observed in the spectrum (Table 1) of XII (viz. $o \rightarrow p$). These processes have been noted previously in the

spectra of azoxybenzenes⁸ and Schiffs bases^{14, 18} and have been substantiated by deuterium labelling studies.⁸ Processes of more general applicability are shown in XVII. In all cases [except for II (Fig. 2) where the formation of the exceptionally stable tropylium cation preponderates all other processes] cleavage B gives a more abundant ion than cleavage A, i.e. the relative abundance of X $C_6H_4^+$ (q) is less than that of Y $C_6H_4^+$ (r). The abundances of these ions are summarized in Table 3 and

their relative intensities may be used to determine the position of the $-\dot{N}-\bar{O}$ group.

In summary, nitrones, in common with other compounds containing the N-oxide group, undergo complex reorganization on electron impact. As it is not possible to predict the presence of such processes with any certainty, only *a posteriori* statements may be made concerning them. Cleavage α to the -N-O moiety allows the determination of the position of this group, in compounds where alkyl groups are not attached to the aromatic rings.

EXPERIMENTAL

All spectra were determined by the direct-insertion procedure with an R.M.U. 6D double focusing mass spectrometer operating at 75 eV, and with a source temp between 100 and 150°. Exact mass measurements were performed with an A.E.I. MS 9 mass spectrometer, using a resolution of 10,000 (10% valley definition) with heptacosafluorotributylamine providing reference masses. All measurements were correct to within 10 ppm.

The spectra of VII was obtained by inserting VI into the source with D₂O.¹⁹

The following nitrones were synthesized by reported procedures;²⁰ I, II, IV-VI, VII, and IX. Compounds III, VII, X and XI were prepared from arylaldehydes and N-arylhydroxylamines in ethanolic solution (cf. 20). The arylaldehydes were purified commercial samples, whereas the N-arylhydroxylamines were freshly prepared from the corresponding nitro compounds by reduction with zinc and ammonium chloride.^{21, 22}

Compound	m.p.		Found		Calculated			
Сотроина	(°C)	С	Н	Ν	С	н	Ν	
 III	9590	79-8	6.1	6.6	79-6	6.2	6.6	
VII	178	67.7	4.2	5-9	67-4	4.4	6.0	
х	126127	64.9	4.7	5-3	64-3	4.6	5.4	
XI	192193	56·3	3.5	9.8	56-4	3.3	10-1	

Microanalyses by Mrs. B. Rasmussen, Aarhus University.

The deuterated nitrone (XIV) was prepared from commercial C_6H_5CDO , while (XV) was prepared from C_6D_5CHO (synthesized from commercial C_6D_5Br).²³

Acknowledgements—The award of an Elsie Ballot Fellowship (to R.G.C.) and of a grant (to S.-O.L.) from Statens Almindelige Videnskabsfond are gratefully acknowledged. The Hitachi Perkin–Elmer RMU 6D mass spectrometer was purchased with the aid of a grant from the Australian Research Grants Committee.

REFERENCES

- ¹ This paper also constitutes part XXX in the series *Electron Impact Studies*—XXIX, J. H. Bowie, P. F. Donaghue, H. J. Rodda and B. K. Simons, *Tetrahedron* 24, 3965 (1968)
- ² R. Grigg and B. G. Odell, J. Chem. Soc. B, 218 (1966).
- ³ T. A. Bryce and J. R. Maxwell, Chem. Comm. 206 (1965).

- ⁴ A. Kubo, S. Sakai, S. Yamada, I. Yokoe, C. Kaneko, A. Tatematsu, H. Yoshizumi, E. Hayashi and H. Nakata, *Chem. and Pharm. Bull.* 15, 1079 (1967).
- ⁵ O. Buchardt, A. M. Duffield and R. H. Shapiro, Tetrahedron 24, 3139 (1968).
- ⁶ J. H. Bowie, R. G. Cooks, N. C. Jamieson and G. E. Lewis, Austral. J. Chem. 20, 2545 (1967).
- ⁷ J. H. Bowie, G. E. Lewis and R. G. Cooks, Chem. Comm. 284 (1967).
- ⁸ J. H. Bowie, R. G. Cooks and G. E. Lewis, Austral. J. Chem. 20, 1601 (1967).
- ⁹ J. S. Splitter and M. Calvin, J. Org. Chem. 30, 3427 (1965) and Refs therein.
- ¹⁰ C. Djerassi and P. Brown, Angew. Chem. (Int. Ed.) 6, 477 (1967).
- ¹¹ J. H. Bowie, D. H. Williams, S.-O. Lawesson, J. Ø. Madsen, C. Nolde and G. Schroll, *Tetrahedron* 22, 3515 (1966).
- ¹² T. Aczel and H. E. Lumpkin, Analyt. Chem. 32, 1819 (1960).
- ¹³ B. Søgaard Larsen, G. Schroll, S.-O. Lawesson, J. H. Bowie and R. G. Cooks, Chem. & Ind.321 (1968).
- 14 J. H. Bowie, R. G. Cooks, J. W. Fisher and T. M. Spotswood, Austral. J. Chem., in press
- ¹⁵ S. H. H. Chaston, S. E. Livingstone, T. N. Lockyer, V. A. Pickles and J. S. Shannon, Ibid. 18, 673 (1965).
- ¹⁶ D. H. Williams, J. Ronayne and J. H. Bowie, J. Am. Chem. Soc. 88, 4980 (1966).
- ¹⁷ J. H. Bowie, D. H. Williams, S.-O. Lawesson and G. Schroll, J. Org. Chem. 31, 1384 (1966).
- ¹⁸ D. J. Elias and R. G. Gillis, Austral. J. Chem. 19, 251 (1966)
- ¹⁹ J. S. Shannon, Ibid. 15 262 (1962).
- ²⁰ A. Macaluso, Cycloaudition Reactions of the N-Sulphinyl and Nitrone Functional Groups. Ph.D. Thesis, Tulane University (1965).
- ²¹ A. I. Vogel, Practical Organic Chemistry p. 602. Longmans, Green, London (1951).
- ²² E. Bamberger and O. Baudisch, Ber. Dtsch. Chem. Ges. 42, 3581 (1909).
- ²³ L. I. Smith and M. Bayliss, J. Org. Chem. 6, 437 (1941).